\(\int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\) [62]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 105 \[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}+\frac {4 \cos (c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a d} \]

[Out]

-arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+4/3*cos(d*x+c)/d/(a+a*sin(d*
x+c))^(1/2)-2/3*cos(d*x+c)*(a+a*sin(d*x+c))^(1/2)/a/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2838, 2830, 2728, 212} \[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x) \sqrt {a \sin (c+d x)+a}}{3 a d}+\frac {4 \cos (c+d x)}{3 d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[Sin[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(Sqrt[a]*d)) + (4*Cos[c + d*x])
/(3*d*Sqrt[a + a*Sin[c + d*x]]) - (2*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(3*a*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 2838

Int[sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*(b*(m + 1) -
a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a d}+\frac {2 \int \frac {\frac {a}{2}-a \sin (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx}{3 a} \\ & = \frac {4 \cos (c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a d}+\int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx \\ & = \frac {4 \cos (c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a d}-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d} \\ & = -\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}+\frac {4 \cos (c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}-\frac {2 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{3 a d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.48 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00 \[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=-\frac {\left ((-6-6 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right )-2 \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}{3 d \sqrt {a (1+\sin (c+d x))}} \]

[In]

Integrate[Sin[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-1/3*(((-6 - 6*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])] - 2*(Cos[(c + d*x)/2] - S
in[(c + d*x)/2])^3)*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))/(d*Sqrt[a*(1 + Sin[c + d*x])])

Maple [A] (verified)

Time = 0.67 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.91

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (3 a^{\frac {3}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )-2 \left (a -a \sin \left (d x +c \right )\right )^{\frac {3}{2}}\right )}{3 a^{2} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(96\)

[In]

int(sin(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(3*a^(3/2)*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^
(1/2))-2*(a-a*sin(d*x+c))^(3/2))/a^2/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 209 vs. \(2 (88) = 176\).

Time = 0.28 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.99 \[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\frac {3 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a \sin \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) - \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d \sin \left (d x + c\right ) + a d\right )}} \]

[In]

integrate(sin(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/6*(3*sqrt(2)*(a*cos(d*x + c) + a*sin(d*x + c) + a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) -
2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x +
c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))/sqrt(a) - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 2)*s
in(d*x + c) - cos(d*x + c) - 2)*sqrt(a*sin(d*x + c) + a))/(a*d*cos(d*x + c) + a*d*sin(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {\sin ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate(sin(d*x+c)**2/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sin(c + d*x)**2/sqrt(a*(sin(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int { \frac {\sin \left (d x + c\right )^{2}}{\sqrt {a \sin \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sin(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^2/sqrt(a*sin(d*x + c) + a), x)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.15 \[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=-\frac {\frac {8 \, \sqrt {2} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {3 \, \sqrt {2} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {3 \, \sqrt {2} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{6 \, d} \]

[In]

integrate(sin(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/6*(8*sqrt(2)*sin(-1/4*pi + 1/2*d*x + 1/2*c)^3/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 3*sqrt(2)*log
(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) + 3*sqrt(2)*log(-sin(-1/4*p
i + 1/2*d*x + 1/2*c) + 1)/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {{\sin \left (c+d\,x\right )}^2}{\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \]

[In]

int(sin(c + d*x)^2/(a + a*sin(c + d*x))^(1/2),x)

[Out]

int(sin(c + d*x)^2/(a + a*sin(c + d*x))^(1/2), x)